Ink-Jet printed graphene electronics

F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. Kulmala, G. W. Hshieh, F. Bonaccorso, P. J. Paul, D. P. Chu, A. C. Ferrari

University of Cambridge, 9 J.J. Thomson Avenue CB3 0FA, Cambridge, United Kingdom ft242@cam.ac.uk

Ink-jet printing is one of the most promising techniques for inexpensive large area fabrication of flexible plastic electronics[1], due to its versatility, the limited number of process steps[2], the ease of mass fabrication[2]. Despite much progress, ink-jet printed organic Thin Film Transistor (TFT) still show poor air stability, limited lifetime, mobility (μ <0.5 cm² V⁻¹ s⁻¹) [3], and ON/OFF ratios(<10⁵). The use of carbon nanotubes (CNT) ink [4,5] allowed to increase μ by at least one order of magnitude[3,4].

Graphene is at the centre of an ever expanding research area [6]. Near-ballistic transport and high mobility make it an ideal material for nanoelectronics, especially for high frequency applications. Furthermore, its optical and mechanical properties are ideal for thin-film transistors and transparent and conductive electrodes[7]. Here we exploit the extraordinary properties of graphene to fabricate graphene-based ink-jet printed transparent and conductive electrodes and TFTs. Liquid phase exfoliation (LPE) is ideal to produce printable graphene-based inks.

High quality graphite flakes are dispersed in organic solvents by ultrasonication (~9 hours) followed by ultracentrifugation to remove large graphite fragments that are likely to clog the nozzle of the ink-jet printer. We investigate N,N-dimethylacetamide, Ethyl Acetate, 1-Methyl-2-pyrrolidone (NMP), Dimethylformamide as organic solvents. By Optical Absorption Spectroscopy (OAS), Transmission electron microscopy (TEM) and Raman spectroscopy we find that NMP gives the highest yield of monolayer graphene [8].

Graphene-ink stripes are then ink-jet printed on Si/SiO₂ modified by Self-Assembled Monolayers (SAM), which reduce the wettability of the substrate and allow uniform printing of graphene electrodes. AFM shows that a ~20 nm thick conductive stripe is obtained with a uniform distribution of graphene flakes. Its optical and electrical properties are studied respectively by OAS and electrical four-point probe measurements at room temperature. The ink-jet printed graphene-ink stripes are then utilized to fabricate graphene-based TFTs achieving mobility up to $95 \text{cm}^2 \text{V}^{-1} \text{s}^{-1}$ and ON/OFF ratio of ~10⁴-10⁵. The electrical and optical performances observed in our devices, demonstrate the viability of graphene-ink to fabricate electronic devices, paving the way to graphene ink-jet printed electronics [9].

References

- [1] H. Sirringhaus et al. Science, **290** (2000) 2123.
- [2] B. J. DeGans et al. Adv. Mater. 16 (2004) 203.
- [3] M. Singh et al. Adv. Mater. 22 (2010) 673.
- [4] M. Ha et al. ACS Nano 4 (2010) 4388.
- [5] P. Beecher et al. J. Appl. Phys. 102 (2007) 043710.
- [6] A. K. Geim et al. Nat. Mater. 6 (2007) 183.
- [7] F. Bonaccorso et al. Nat. Photon. 4 (2010) 611.
- [8] Y. Hernandez et al. Nat. Nanotechnol. 3 (2008) 563
- [9] F. Torrisi et al., submitted, (2011).

Figures

Figure: a) Graphene-ink. b) Example of graphene ink-jet printed pattern. c) Graphene TFT fabrication steps: graphene-ink is printed on Si/SiO₂ substrate, gold pads define source and drain.